Abstract

Silicon carbide (SiC) CMOS circuits have been developed recently to provide monolithic control for SiC MOS power switching devices. Although SiC CMOS is not well suited for high-end microprocessor applications, it must provide the necessary response time performance required for safe operation in high-voltage power switching applications. Despite previous developments in SiC CMOS process technology; which have enabled digital circuit operation using a 5 V power supply, circuit switching speeds were in the microsecond range. An obvious way to improve circuit performance is to scale device lateral and vertical dimensions. This paper describes recent progress in the development of a submicron, single metal, p-well CMBS process technology using 6H-SiC. Conventional NMOS transistors are fabricated with 0.5-mm (drawn) channel lengths and exhibit acceptable short-channel effects. Conventional PMOS transistors exhibit punchthrough at 0.8-mm channel lengths and require considerable channel engineering efforts which are also presented. Several digital logic gates and a ring oscillator have been fabricated with nanosecond gate switching performance. Performance limiting factors like parasitic series resistance is also investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call