Abstract

Breast cancer (BC) poses a significant threat to women's health, with triple-negative breast cancer (TNBC) representing one of the most challenging and aggressive subtypes due to the lack of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) expression. Traditional TNBC treatments often encounter issues such as low drug efficiency, limited tumor enrichment, and substantial side effects. Therefore, it is crucial to explore novel diagnostic and treatment systems for TNBC. Multifunctional molecular probes (MMPs), which integrate target recognition as well as diagnostic and therapeutic functions, introduce advanced molecular tools for TNBC theranostics. Using an MMP system, molecular drugs can be precisely delivered to the tumor site through a targeted ligand. Real-time dynamic monitoring of drug release achieved using imaging technology allows for the evaluation of drug enrichment at the tumor site. This approach enables accurate drug release, thereby improving the therapeutic effect. Therefore, this review summarizes the recent advancements in MMPs for TNBC theranostics, encompassing the design and synthesis of MMPs as well as their applications in the field of TNBC theranostics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.