Abstract

The rapid development of industrialization and urbanization has led to serious environmental pollution. As an environmentally friendly and sustainable energy source, solar-driven semiconductor photocatalysis has been widely applied in environmental remediation and antibacterial activity owing to its gentle reaction conditions. The use of CeO2-based nanomaterials in green energy production, CO2 conversion, pollutant degradation, and antibacterial is increasing. The photocatalytic performance of CeO2 can be enhanced by appropriate modification strategies that suppress the rapid recombination of electron-hole pairs. This paper provides a systematic introduction to various modification strategies for CeO2, and reviews the research progress of modified CeO2 materials in photocatalytic CO2 reduction, photocatalytic hydrogen evolution, heavy metal removal, photodegradation of organic pollutants, and antibacterial fields, finally offering perspectives on its future development direction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.