Abstract

Recent advances and achievements in emerging Li-X (X = O2 , S, Se, Te, I2 , Br2 ) batteries with promising cathode materials open up new opportunities for the development of high-performance lithium-ion battery alternatives. In this review, we focus on an overview of recent important progress in the design of advanced cathode materials and battery models for developing high-performance Li-X (X = O2 , S, Se, Te, I2 , Br2 ) batteries. We start with a brief introduction to explain why Li-X batteries are important for future renewable energy devices. Then, we summarize the existing drawbacks, major progress and emerging challenges in the development of cathode materials for Li-O2 (S) batteries. In terms of the emerging Li-X (Se, Te, I2 , Br2 ) batteries, we systematically summarize their advantages/disadvantages and recent progress. Specifically, we review the electrochemical performance of Li-Se (Te) batteries using carbonate-/ether-based electrolytes, made with different electrode fabrication techniques, and of Li-I2 (Br2 ) batteries with various cell designs (e.g., dual electrolyte, all-organic electrolyte, with/without cathode-flow mode, and fuel cell/solar cell integration). Finally, the perspective on and challenges for the development of cathode materials for the promising Li-X (X = O2 , S, Se, Te, I2 , Br2 ) batteries is presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call