Abstract

Diesel engines in heavy-duty vehicles are predicted to maintain a stable presence in the future due to the difficulty of electrifying heavy trucks, mine equipment, and railway cars. This trend encourages the effort to develop new aluminum alloy systems with improved performance at diesel engine conditions of elevated temperature and stress combinations to reduce vehicle weight and, consequently, CO2 emissions. Aluminum alloys need to provide adequate creep resistance at ~300 °C and room-temperature tensile properties better than the current commercial aluminum alloys used for powertrain applications. The studies for improving creep resistance for aluminum casting alloys indicate that their high-temperature stability depends on the formation of high-density uniform dispersoids with low solid solubility and low diffusivity in aluminum. This review summarizes three generations of diesel engine aluminum alloys and focuses on recent work on the third-generation dispersoid-strengthened alloys. Additionally, new trends in developing creep resistance through the development of alloy systems other than Al-Si-based alloys, the optimization of manufacturing processes, and the use of thermal barrier coatings and composites are discussed. New progress on concepts regarding the thermal stability of rapidly solidified and nano-structured alloys and on creep-resistant alloy design via machine learning-based algorithms is also presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call