Abstract

Plants belonging to the monocotyledonous Amaryllidaceae family include about 1100 species divided among 75 genera. They are well known as medicinal and ornamental plants, producing pharmaceutically important alkaloids, the most intensively investigated of which are galanthamine and lycorine. Amaryllidaceae alkaloids possess various biological activities, the most important one being their anti-acetylcholinesterase activity, used for the treatment of Alzheimer’s disease. Due to increased demand for Amaryllidaceae alkaloids (mainly galanthamine) and the limited availability of plant sources, in vitro culture technology has attracted the attention of researchers as a prospective alternative for their sustainable production. Plant in vitro systems have been extensively used for continuous, sustainable, and economically viable production of bioactive plant secondary metabolites. Over the past two decades, a significant success has been demonstrated in the development of in vitro systems synthesizing Amaryllidaceae alkaloids. The present review discusses the state of the art of in vitro Amaryllidaceae alkaloids production, summarizing recently documented plant in vitro systems producing them, as well as the authors’ point of view on the development of biotechnological production processes with a focus on the future prospects of in vitro culture technology for the commercial production of these valuable alkaloids.

Highlights

  • Plants belonging to the monocotyledonous Amaryllidaceae family include about 1100 species divided among 75 genera (Amaryllis, Galanthus, Leucojum, Narcissus, Haemanthus, Nerine, Hippeastrum, Sternbergia, Clivia, Rhodophiala, Pancratium, Hymenocallis, Crinum, Lycoris, etc.), which are well known, mainly as medicinal and ornamental plants [1,2]

  • Due to the increased demand for Amaryllidaceae alkaloids and the limited availability of plant sources, in vitro culture technology has attracted the attention of researchers as a prospective alternative for their sustainable production [21]

  • This review examines the state of the art of in vitro Amaryllidaceae alkaloid production, summarizing recently documented plant in vitro systems producing them as well as the authors’ point of view on the development of biotechnological production processes with a focus on the future prospects of the in vitro culture technology for the commercial production of these valuable alkaloids

Read more

Summary

Introduction

Plants belonging to the monocotyledonous Amaryllidaceae family include about 1100 species divided among 75 genera (Amaryllis, Galanthus, Leucojum, Narcissus, Haemanthus, Nerine, Hippeastrum, Sternbergia, Clivia, Rhodophiala, Pancratium, Hymenocallis, Crinum, Lycoris, etc.), which are well known, mainly as medicinal and ornamental plants [1,2]. Due to the increased demand for Amaryllidaceae alkaloids (mainly galanthamine) and the limited availability of plant sources, in vitro culture technology has attracted the attention of researchers as a prospective alternative for their sustainable production [21]. Plant in vitro systems have been extensively used for continuous, sustainable, and economically viable production of bioactive plant secondary metabolites [22]. This review examines the state of the art of in vitro Amaryllidaceae alkaloid production, summarizing recently documented plant in vitro systems producing them as well as the authors’ point of view on the development of biotechnological production processes with a focus on the future prospects of the in vitro culture technology for the commercial production of these valuable alkaloids

Plant In Vitro Systems Producing Amaryllidaceae Alkaloids
Biotechnological
Selection of Primary Plant Material
Decision on the Type of Plant In Vitro System
Optimization of the Biosynthetic Process
Findings
Conclusions and Future Prospects
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.