Abstract

Creating a blood vessel by tissue engineering is one of the most demanding goals in tissue engineering. Our laboratory developed, using the self-assembly approach, the first completely biological tissue engineered blood vessel (TEBV) constituted of living human cells in the absence of any synthetic or exogenous material. The phenotypic and functional variations of smooth muscle cell (SMC) are of paramount importance in TEBV reconstruction. Thus, the phenotype and extracellular matrix (ECM) production of SMC were studied along the whole sequence of TEBV production. The functional and mechanical properties can be greatly enhanced by active cell orientation in the ECM. Accordingly, the method of preparing living tissue engineered sheets was modified to obtain an optimal alignment of SMC before rolling them into a tubular form. These results have allowed us to create a better TEBV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.