Abstract

Tryptophan is metabolized to a-amino-b-carboxymuconate-«semialdehyde (ACMS) via 3-hydroxyanthranilate (3-HA). ACMS decarboxylase (ACMSD) directs ACMS to acetyl CoA; otherwise ACMS is non-enzymatically converted to quinolinate (QA), leading to the formation of NAD and its degradation products. Thus, ACMSD is a critical enzyme for tryptophan metabolism. Phthalate esters have been suspected of being environmental endocrine disrupters. Because of the structural similarity of phthalate esters with tryptophan metabolites, we examined the effects of phthalate esters on tryptophan metabolism. Phthalate esters containing diets were orallygiventoratsandtheurinaryexcretedtryptophanmetabolites were quantified. Of the phthalate esters with different side chains tested, di(2-ethylhexyl)phthalate (DEHP) and its metabolite, mono(2-ethylhexyl)phthalate (MEHP), most strongly enhanced the production of QA and degradation products of nicotinamide, while3-HAwasunchanged.Thispatternofmetabolicchangeledus to assume that these esters lowered ACMSD protein or its activity. Although DEHP could not be tested because of its low solubility, MEHP reversibly inhibited ACMSD from rat liver and mouse kidney, andalso the recombinanthuman enzyme. Correlationbetween inhibition of ACMSD by phthalate esters with different side chains and urinary excretion of QA supports the notion that phthalate esters perturb tryptophan metabolism by inhibiting ACMSD. Quinolinate is a potential endogenous toxin and has been implicated in thepathogenesisofvariousdisorders.Althoughtoxicityofphthalate esters through accumulation of QA remains to be investigated, they may be detrimental by acting as metabolic disrupters when intake of a tryptophan-rich diet and exposure to phthalate esters occur coincidentally.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call