Abstract

The available vaccine and therapies against hepatitis B virus (HBV) rarely eliminate chronic infection with the virus. High mortality resulting from complicating cirrhosis and hepatocellular carcinoma makes improving anti-HBV therapy an important priority. Recent advances with using gene therapy to counter HBV have potential and are the focus of this review. The stable replication-competent HBV intermediate comprising covalently closed circular DNA (cccDNA) is the template for expression of all viral genes. Inactivating cccDNA has thus been a focus of research aimed at achieving cure for HBV infection. Many studies have reported profound inhibition of replication of the virus using silencing and editing techniques. Therapeutic gene silencing with synthetic short interfering RNA is now in clinical trials. Ability to mutate and permanently inactivate cccDNA with engineered gene editors, such as those derived from CRISPR/Cas or TALENs, is particularly appealing but has not yet reached clinical evaluation. Gene silencing and gene editing potentially provide the means to cure HBV infection. However, achieving efficient delivery of therapeutic sequences, ensuring their specificity of action and progress with other antiviral strategies are likely to determine utility of gene therapy for chronic HBV infection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.