Abstract
Current therapies for Alzheimer’s disease (AD) and related disorders have demonstrated very modest, symptomatic efficacy, leaving an unmet medical need for new, more effective therapies. While drug development efforts in the last two decades have primarily focused on the amyloid cascade hypothesis, with disappointing results so far, tau-based strategies have received little attention until recently despite that the presence of extensive tau pathology is central to the disease. The discovery at the turn of the century of mutations within the tau gene that cause fronto-temporal dementia demonstrated that tau dysfunction was per se sufficient to cause neuronal loss and clinical dementia. Development of tau pathology is associated with progressive neuronal loss and cognitive decline and is the common underlying cause of a group of neurodegenerative disorders collectively known as “tauopathies”. Tauopathies are clinically, morphologically and biochemically heterogeneous neurodegenerative diseases characterized by the deposition of abnormal tau protein in the brain. The neuropathological phenotypes are distinguished based on the involvement of different anatomical areas, cell types and presence of distinct isoforms of tau in the pathological deposits. Thus, the spectrum of tauopathy entities expands beyond the traditionally discussed disease forms. Emerging evidence strongly suggests that accumulation of abnormal tau is mediated through spreading of seeds of the protein from cell to cell. This prion-like mechanism would support the concept that in AD brains, tau pathology iinitiates in a very small part of the brain many years before becoming symptomatic, spreading slowly and progressively to the whole brain following an anatomically defined pattern. Emerging therapeutic strategies aimed at treating the underlying causes of the tau pathology will be discussed, including some novel therapeutic approaches on the verge of providing new treatment paradigms in upcoming years.
Highlights
Alzheimer’s disease (AD) is an incurable neurodegenerative disease characterized by progressive dementia
The results of the present study indicate that development of the neuronal hypoxic tolerance induced by the three-trial, in contrast to one-trial, mild hypoxic preconditioning is apparently largely associated with the activation of CREB, as well as brain-derived neurotrophic factor (BDNF) and Bcl-2 overexpression
No significant differences in serum level of Solubile form of RAGE (sRAGE) where found between rapidly progressing and slow progressing subgroup of multiple sclerosis (MS) patients.Our results suggest for the role of sRAGE in MS ethiopathogenesis, but we did not find any association of sRAGE in serum with the rate of MS disability progression
Summary
Alzheimer’s disease (AD) is an incurable neurodegenerative disease characterized by progressive dementia. The aim of the study was to characterize the effects of streptozocin (STZ)-indced diabetes on learning and memory of 5XFAD and wild-type (WT) mice in Morris water maze (MWM) at ages 2 and 6 months and on brain amyloid load. Existing evidence suggests GABAergic system is involved in pathophysiology of Alzheimer’s disease (AD) via inhibitory interneuron deficits (Verret et al, 2012) and decrease in functional GABAA receptors (Limon et al, 2012). Our concept: low doses of muscimol may prevent learning/memory deficits in intracerebroventricular (icv) streptozocin (STZ)-induced AD nontransgenic rat model. The Sigma-1 receptor is a chaperone protein that modulates intracellular calcium signalling of the endoplasmatic reticulum and is involved in learning and memory processes.The aim of the present study was to compare in vitro Ca2+ concentration modulating activity and in vivo behavioural effects of enantiomers of methylphenylpiracetam, a novel positive allosteric modulator of Sigma-1 receptors
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have