Abstract
Planetary migration is the process by which a forming planet undergoes a drift of its semi-major axis caused by the tidal interaction with its parent protoplanetary disc. One of the key quantities to assess the migration of embedded planets is the tidal torque between the disc and the planet, which has two components: the Lindblad torque and the corotation torque. We review the latest results on both components for planets in circular orbits, with special emphasis on the various processes that give rise to a large corotation torque and those contributing to its saturation. The additional corotation torque could help address the shortcomings that have recently been exposed in models of planet population synthesis. We also review recent results concerning the migration of giant planets that carve gaps in the disc (type II migration) and the migration of sub-giant planets that open partial gaps in massive discs (type III migration).
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have