Abstract

Osteoarthritis (OA), is a common musculoskeletal disorder that will progressively increase in older populations and is expected to be the most dominant cause of disability in the world population by 2030. The progression of OA is controlled by a multi-factorial pathway that has not been completely elucidated and understood yet. However, over the years, research efforts have provided a significant understanding of some of the processes contributing to the progression of OA. Both cartilage and bone degradation processes induce articular cells to produce inflammatory mediators that produce proinflammatory cytokines that block the synthesis of collagen type II and aggrecan, the major components of cartilage. Systemic administration and intraarticular injection of anti-inflammatory agents are the first-line treatments of OA. However, small anti-inflammatory molecules are rapidly cleared from the joint cavity which limits their therapeutic efficacy. To palliate this strong technological drawback, different types of polymeric materials such as microparticles, nanoparticles, and hydrogels, have been examined as drug carriers for the delivery of therapeutic agents to articular joints. The main purpose of this review is to provide a summary of recent developments in natural and synthetic polymeric drug delivery systems for the delivery of anti-inflammatory agents to arthritic joints. Furthermore, this review provides an overview of the design rules that have been proposed so far for the development of drug carriers used in OA therapy. Overall it is difficult to state clearly which polymeric platform is the most efficient one because many advantages and disadvantages could be pointed to both natural and synthetic formulations. That requires further research in the near future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call