Abstract
AbstractAdditive manufacturing (AM) has emerged as a very promising technology for producing complex metallic components with enhanced design flexibility. However, the mechanical properties and fatigue behavior of AM metals differ significantly from conventionally manufactured materials, thereby presenting challenges in accurately predicting their fatigue life. This study provides a comprehensive overview of recent developments and future trends in fatigue life prediction of AM metals, with a particular emphasis on machine learning (ML) modeling techniques. This review recalls recent developments and achievements in fatigue characteristics of AM metals, ML‐based approaches for fatigue life prediction of AM metals, and non‐ML‐based methodologies for the same purpose. In particular, some commonly used regression and classification techniques for fatigue evaluation of AM metals are summarized and elaborated. The study intends to furnish researchers, engineers, and practitioners in the field of AM with a guidance for the accurate and efficient prediction of fatigue life in AM metal components.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Fatigue & Fracture of Engineering Materials & Structures
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.