Abstract

The ongoing pandemic of Covid-19 caused by SARS-CoV-2 is a major threat to global public health, drawing attention to develop new therapeutics for treatment. Much research work is focused on identifying or repurposing new small molecules to serve as potential inhibitors by interacting with viral or host-cell molecular targets and understanding the nature of the virus in the host cells. Identifying small molecules as potent inhibitors at an early stage is advantageous in developing a molecule with higher potency and then finding a lead compound for the development of drug discovery. Small molecules can show their inhibition property by targeting either the SARS-CoV-2 main protease (Mpro) enzyme, papain-like protease (PLpro) enzyme, or helicase (Hel), or blocking the spike (S) protein angiotensin-converting enzyme 2 (ACE2) receptor. A very recent outbreak of a new variant (B.1.617.2-termed as Delta variant) of SARS-CoV-2 worldwide posed a greater challenge as it is resistant to clinically undergoing vaccine trials. Thus, the development of new drug molecules is of potential interest to combat SARS-CoV-2 disease, and for that, the fragment-based drug discovery (FBDD) approach could be one of the ways to bring out an effective solution. Two cysteine protease enzymes would be an attractive choice of target for fragment-based drug discovery to tune the molecular structure at an early stage with suitable functionality. In this short review, the recent development in small molecules as inhibitors against Covid-19 is discussed, and the opportunity for FBDD is envisioned optimistically to provide an outlook regarding Covid-19 that may pave the way in the direction of the Covid-19 drug development paradigm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call