Abstract

ABSTRACT At National Ignition Facility (NIF), yield amplification due to alpha particle heating approached ~3 in the highest performing inertial confinement fusion (ICF) implosions, while yield amplification of ~15-30 is needed for ignition. Hydrodynamic instabilities are a major factor in degradation of implosions while understanding and mitigation of the instabilities are critical to achieving ignition. This article describes recent and planned hydrodynamic instability experiments with several focused platforms that have been developed to directly measure these instabilities in all phases of ICF implosions. Measurements of ripple-shock generation at OMEGA laser have indicated initial seeds for the instabilities in three ablators - plastic (CH), beryllium, and high-density carbon (HDC). Hydrodynamic Growth Radiography (HGR) platform was used to measure instability growth at the ablation front in the acceleration phase of implosions. This platform used pre-imposed 2-D perturbations for growth factor measurements at different perturbation wavelengths and was also used to measure growth of “native roughness” modulations, fill tubes, and capsule support membranes or “tents”. Also, in the acceleration phase several new experimental platforms have been or are being developed to measure instability growth at the ablator-ice interface. In the deceleration phase of implosions, “self-emission” and “self-backlighting” platforms were developed to measure perturbations near peak compression. This article reviews recent progress and results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.