Abstract

With increasing economic globalization, food safety is becoming the most serious concern in the food production and distribution system. Food safety hazard factors (FSHFs) can be categorized into chemical hazards, biological hazards and physical hazards, with the detection of the former two having fascinated interdisciplinary research areas spanning chemistry, material science and biological science. Molecularly imprinted polymer (MIP) -based sensors overcome many limitations of traditional detection methods and provide opportunities for efficient, sensitive and low-cost detection using smart miniaturized equipment. With highly specific molecular recognition capacity and high stability in harsh chemical and physical conditions, MIPs have been used in sensing platforms such as electrochemical, optical and mass-sensitive sensors as promising alternatives to bio-receptors for food analysis. In this systemic review, we summarize recent advances of MIPs and MIP-based sensors, such as popular monomers, usual polymerization strategies, fresh modification materials and advanced sensing mechanisms. The applications of MIP-based sensors in FSHF detection are discussed according to sensing mechanisms, including electrochemistry, optics and mass-sensitivity. Finally, future perspectives and challenges are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call