Abstract

Bacterial infections have become a global public health problem. Rapid and sensitive bacterial detection is of great importance for human health. Among various sensor systems, fluorescence sensor is rapid, portable, multiplexed, and cost-efficient. Herein, we reviewed the current trends of fluorescent sensors for bacterial detection from three aspects (response materials, target and recognition way). The fluorescent materials have the advantages of high fluorescent strength, high stability, and good biocompatibility. They provide a new path for bacterial detection. Several recent fluorescent nanomaterials for bacterial detection, including semiconductor quantum dots (QDs), carbon dots (CDs), up-conversion nanoparticles (UCNPs) and metal organic frameworks (MOFs), were introduced. Their optical properties and detection mechanisms were analyzed and compared. For different response targets in the detection process, we studied the fluorescence strategy using DNA, bacteria, and metabolites as the response target. In addition, we classified the recognition way between nanomaterial and target, including specific recognition methods based on aptamers, antibodies, bacteriophages, and non-specific recognition methods based on biological functional materials. The characteristics of different recognition methods were summarized. Finally, the weaknesses and future development of bacterial fluorescence sensor were discussed. This review provides new insights into the application of fluorescent sensing systems as an important tool for bacterial detection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call