Abstract

Gain degradation in irradiated bipolar transistors can be a significant problem, particularly in linear integrated circuits. In many bipolar technologies, the degradation is greater for irradiation at low dose rates than it is for typical laboratory dose rates. Ionizing radiation causes the base current in bipolar transistors to increase, due to the presence of net positive charge in the oxides covering sensitive device areas and increases in surface recombination velocity. Understanding the mechanisms responsible for radiation-induced gain degradation in bipolar transistors is important in developing appropriate hardness assurance methods. This paper reviews recent modeling and experimental work, with the emphasis on low-dose-rate effects. A promising hardness assurance method based on irradiation at elevated temperatures is described.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.