Abstract
Machine learning is a computational tool that is increasingly used for the analysis of medical data and has provided the promise of more personalized care. The frequency with which machine learning analytics are reported in lupus research is comparable with that of rheumatoid arthritis and cancer, yet the clinical application of these computational tools has yet to be translated into better care. Considerable work has been applied to the development of machine learning models for lupus diagnosis, flare prediction, and classification of disease using histology or other medical images, yet few models have been tested in external datasets and independent centers. Application of machine learning has yet to be reported for lupus clinical trial enrichment and automated identification of eligible patients. Integration of machine learning into lupus clinical care and clinical trials would benefit from collaborative development between clinicians and data scientists. Although the application of machine learning to lupus data is at a nascent stage, initial results suggest a promising future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.