Abstract

Antibiotic-resistant bacteria and antibiotic resistance genes (ARGs) are pollutants of worldwide concern that seriously threaten public health and ecosystems. Machine learning (ML) prediction models have been applied to predict ARGs in beach waters. However, the existing studies were conducted at a single location and had low prediction performance. Moreover, ML models are “black boxes” that do not reveal their predictions' internal nuances and mechanisms. This lack of transparency and trust can result in serious consequences when using these models in high-stakes decisions. In this study, we developed a gradient boosted regression tree based (GBRT) ML model and then described its behavior using six explainable artificial intelligence (XAI) model-agnostic explanation methods. We used hydro-meteorological and qPCR data from the beaches in South Korea and Pakistan and developed ML prediction models for aac (6′-lb-cr), sul1, and tetX with 10-fold time-blocked cross-validation performances of 4.9, 2.06 and 4.4 root mean squared logarithmic error, respectively. We then analyzed the local and global behavior of the developed ML model using four interpretation methods. The developed ML models showed that water temperature, precipitation and tide are the most important predictors for prediction of ARGs at recreational beaches. We show that the model-agnostic interpretation methods not only explain the behavior of the ML model but also provide insights into the behavior of the ML model under new unseen conditions. Moreover, these post-processing techniques can be a debugging tool for ML-based modeling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.