Abstract

In this work, a recently patented seismic damper to be applied to structures composed by systems of panels is presented. In particular, the article is devoted to characterize the behaviour of the proposed connector by means of an experimental and numerical analysis and to provide some information about the cost of the elements needed to realize the damper, accounting for the manufacturing process. The experimental analysis has regarded five specimens tested under different loading conditions, and it has been used as a term of comparison with the classical systems of connection currently employed in these structures. Afterwards, in the article, a design criterion able to control the capacity and ductility of the device by simply varying the shape of the damper is presented and its accuracy is evaluated by performing finite element analyses. The results of the experimental and finite element analyses are very promising in terms of cyclic behaviour and energy dissipation capacity and reveal that the design of the element can be accurately controlled by means of the proposed approach. Furthermore, the cost estimate has revealed that the proposed damper is also cheaper than the classical solutions with a cost reduction of about 40%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call