Abstract

Abstract The paper deals with improvements of accuracy of structural dynamic calculations by using both the advantages of Finite Element Analysis (FEA) and Experimental Modal Analysis (EMA). The basis for such improvements are reasonable mechanical and numerical models and accurate frequency response measurements (eigenfrequencies and mode shapes). The paper deals first with reasons for and estimations of errors in numerical and experimental analysis. It can be shown by theory and experiment that neither FEA nor EMA models are unique, due to inevitable incompleteness of the mode shapes and eigenfrequencies from a vibration test. Verification and updating of FE models by linking FEA with EMA are discussed in the paper and mainly focussed on FE models with a large number of degrees of freedom. Hence an update method has been introduced, which leads to an improved model in a relatively small quantity of computer time. It can be shown, that based on measured eigenfrequencies and calculated eigenvectors, an updating of FE-models for real engineering problems, by changing the mass matrix only, is a very efficient procedure with a surprisingly good quality updated model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call