Abstract
• Heteropolyacids (HPAs) catalysts for the synthesis of levulinic esters (LEs) from biomass has been reviewed. • The synthetic routes to LEs from various renewable chemical platforms have been highlighted. • The role of various structural features of HPA-based catalysts on the selectivity and yield of LEs have been elaborated. • The applications of LEs have been discussed and their possible synthetic upgrading have been elaborated. The esters of biomass-derived levulinic acid (LA) have several potential applications, including cleaner-burning fuel additive, green solvent, fragrance ingredient, and a renewable chemical intermediate for downstream value addition. The levulinic esters (LEs) can be prepared by the acid-catalyzed alcoholysis of the biomass-derived furanic and levulinic chemical platforms such as LA, furfuryl alcohol (FAL), 5-(hydroxymethyl)furfural (HMF), and angelica lactone (AGL). The acid-catalyzed deconstruction of carbohydrates in an alcoholic medium affords the one-pot preparation of LEs. Choosing the right catalyst is of paramount importance for synthesizing LEs from both the economic and environmental perspectives. In this regard, heteropoly acids (HPAs), a class of polyoxometalates (POMs) bearing protons as the counter cation, have found widespread applications as acid catalysts in various organic transformations. HPAs are blessed with conducive properties such as controlled Brønsted and Lewis acidity, high thermal stability, robust structural features, non-toxic nature, tunable solubility, and less corrosiveness. Over the past several years, HPAs have found extensive applications as efficient and environment-friendly catalysts in biorefinery operations, including the synthesis of LEs. At this juncture, it is imperative to ascertain the achievements in this field to date and re-evaluate the challenges. This review attempts to provide up-to-date information about the preparation of LEs using HPA-based catalysts, critically analyze the literature cited, draw conclusions, and propose future prospects.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have