Abstract

Weld residual stress can contribute to the reduction of structure lifetime and accelerate the formation of fatigue cracks, brittle fractures, or stress corrosion cracking. Distortion can have a significant impact on the dimensional ac-curacy of assembly, structure strength, and fabrication cost. In the past two decades, there have been many significant and exciting developments in the prediction and mitigation of weld residual stress and distortion. This paper reviews the recent advances in mitigation techniques that have been applied in the structure design, manufacturing, and postweld stages. The techniques used in the structure design stage include selecting the type of weld joint and weld groove, using balanced welding, determining appropriate plate thickness and stiffener spacing, and considering distortion compensation. Mitigation techniques used in the manufacturing stage include welding sequence optimization, reducing welding heating input, selecting low-transformation-temperature filler metals, prebending, precambering, constraints, trailing and stationary cooling, in-processing rolling, transient thermal tensioning, and additional heat sources. Postweld mitigation techniques include postweld heating and mechanical treatment. Finally, the remaining challenges and new development needs were discussed to guide future development in the field of mitigating weld residual stress and distortion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call