Abstract

In the present work, both experimental and numerical simulation methods are used to investigate the characteristics of welding distortion and residual stress distribution. A 3D thermo-mechanical Finite Element Analysis (FEA) method is used to predict the welding distortion and residual stress of cylinder-shaped multi-pass layer weldments. Each weld pass is performed using a quarter-circle balanced welding procedure. To investigate the influence of deposition sequence and welding heat input on the welding distortion and residual stress, a continuous welding procedure is also calculated. The corresponding FEA models considered a moving heat source, the deposition sequence, and temperature-dependent thermal and mechanical properties. The results predicted by 3D FEA model are generally in good agreement with the measurements. Finally, the numerical and experimental results suggest that both deposition sequence and heat input affect welding distortion and residual stress distribution. Furthermore, the 3D thermal-mechanical FEA method can predict cylinder-type welding distortion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call