Abstract
AbstractHydrogen peroxide (H2O2) is a highly effective, green oxidant that has found application in sectors ranging from the synthesis of fine chemicals and waste stream treatment to the extraction of precious metals and the bleaching of paper pulp and textiles. The growing demand for H2O2 has seen it become one of the 100 most important chemicals in the world. The direct synthesis of H2O2 from H2 and O2 has been a challenge for the scientific community for over 100 years and represents an attractive alternative to the current means of production. Herein we discuss the historical perspective of the direct synthesis process, the recent literature regarding catalyst design and the role of additives as well as the application of H2O2 as an in situ oxidant. We discuss the key problems that remain and conclude that although there has been progress with respect to the selectivity of hydrogen utilisation, there is a need to now concentrate on catalyst activity as the key remaining problem requiring a solution is the concentration of H2O2 that can be achieved, especially in flow reactors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.