Abstract

Abstract Redox enzymes catalyze major reactions in microorganisms to supply energy for life. Their use in electrochemical biodevices requires their integration on electrodes, while maintaining their activity and optimizing their stability. In return, such applicative development puts forward the knowledge on involved catalytic mechanisms, providing a direct electrode connection of the enzyme is fulfilled. Enzymes being large molecules with active site embedded in an insulating moiety, direct bioelectrocatalysis supposes strategies for specific orientation of the enzyme to be developed. In this review, we summarize recent advances during the past 3 years in the chemical modification of electrodes favoring direct electrocatalysis. We present the different methodologies used according to the electrode materials, including metals, carbon-based electrodes, or porous structures and discuss the gained insights into bioelectrocatalysis. We especially focus on enzyme engineering, which appears as an emerging strategy for enzyme anchoring. Remaining challenges will be discussed with regard to these later findings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.