Abstract

Establishing structure–property correlations is of paramount importance to materials research. The ability to selectively detect observable magnetization from transitions between quantized spin states of nuclei makes nuclear magnetic resonance (NMR) spectroscopy a powerful probe to characterize solids at the atomic level. In this article, we review recent advances in NMR techniques in six areas: spectral resolution, sensitivity, atomic correlations, ion dynamics, materials imaging, and hardware innovation. In particular, we focus on the applications of these techniques to materials research. Specific examples are given following the general introduction of each topic and technique to illustrate how they are applied. In conclusion, we suggest future directions for advanced solid-state NMR spectroscopy and imaging in interdisciplinary research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.