Abstract

The selective oxidation of propylene to acrolein is an important reaction in the chemical industry which has been extensively studied over the last few decades. Today, spectroscopic, computational, and synthetic approaches allow a renewed view of this established and well-understood catalytic process at a fundamental level. Consequently, a revised mechanistic pathway for the selective propylene oxidation over bismuth molybdates has been suggested recently. Furthermore, studies concerning the local interaction of specific surface entities as well as concepts from semiconductor science have provided valuable information to describe the operation mode of oxidation catalysts. New synthetic methods can be used not only to tune the specific surface area and surface species of a catalyst but also to give direct access to distinct metal oxide phases or specific crystalline phases with a synergetic interplay on the nanoscale. Since complex multicomponent systems, which exhibit both higher selectivity and activity ...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call