Abstract

Nitric oxides (NOx, which mainly include more than 90% NO) are one of the major air pollutants leading to a series of environmental problems, such as acid rain, haze, photochemical smog, etc. The selective catalytic oxidation of NO to NO2 (NO-SCO) is regarded as a key process for the development of selective catalytic reduction of NOx by ammonia (via fast selective catalytic reduction reaction) and also the simultaneous removal of multipollutant (pre-oxidation and post-absorption). Until now, scholars have developed various types of NO-SCO catalysts, dividing the main groups into noble metals (Pt, Pd, Ru, etc.), metal oxides (Mn-, Co-, Cr-, Ce-based, etc.), perovskite-type oxides (LaMnO3, LaCoO3, LaCeCoO3, etc.), carbon materials (activated carbon, carbon fiber, carbon nanotube, graphene, etc.), and zeolites (ion-exchanged ZSM-5, CHA, SAPO, MCM-41, etc.) in this review. This paper summarizes the recent progress of the above typical catalysts and mostly analyzes the catalytic performance for NO oxidation in terms of the H2O and/or SO2 resistances and also the influencing factors, and their reaction mechanisms are described in detail. Finally, this review points out the key problems and possible solutions of the current researches and presents the application prospects and future development directions of NO-SCO technology using the above typical catalysts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call