Abstract

Metal-organic hybrid (MOH) materials with room-temperature phosphorescence (RTP) have drawn attention in recent years due to their superior RTP properties of high phosphorescence efficiency and ultralong emission lifetime. Great achievement has been realized in developing MOH materials with high-performance RTP, but a systematic study on MOH materials with RTP feature is lacking. This review highlights recent advances in metal-organic hybrid RTP materials. The molecular packing, the photophysical properties, and their applications of metal-organic hybrid RTP materials are discussed in detail. Metal-organic hybrid RTP materials can be divided into six parts: coordination polymers, metal-organic frameworks (MOFs), metal-halide hybrids, organic ionic crystals, organic ionic polymers, and organic-inorganic hybrid perovskites. These RTP materials have been successfully applied in time-resolved data encryption, fingerprint recognition, information logic gates, X-ray imaging, and photomemory. This review not only provides the basic principles of designing RTP metal-organic hybrids, but also propounds the future research prospects of RTP metal-organic hybrids. This review offers many effective strategies for developing metal-organic hybrids with excellent RTP properties, thus satisfying practical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.