Abstract

Room temperature phosphorescence (RTP) materials comprising organic-inorganic hybrid, pure organic, and polymer RTP materials have been a research focus due to their tunable molecular structures, long emission lifetimes and extensive optical applications. Many design methods including halogen bonding interactions, heavy atom effect, metal-organic frameworks, polymerization, host-guest doping, and H-aggregation have been developed by RTP researchers. Narrowing the energy gap between the S1 and lowest Tn states, enhancing the intersystem crossing (ISC) rate, increasing the spin-orbit coupling (SOC) value and stabilizing triplet emission states are the core factors to promoting RTP performance. In this review, lots of cases of organic-inorganic hybrid, pure organic, and polymer RTP materials with advanced design strategies, excellent RTP properties and intelligent applications have been classified and sorted. Their molecule structural designability and stimulus responsiveness endow them with RTP adjustability, which makes them excellent phosphors for modern optical applications. This review provides a systematic case elaboration of typical RTP systems in recent years and identifies the future challenges to improving RTP performance and finding novel applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.