Abstract

Over the past decades, the advantages of optimization-based control techniques over conventional controllers inspired developments that enabled the use of model predictive control (MPC) in applications with very high sampling rates. Since at the heart of most linear and nonlinear MPC controllers resides a quadratic programming (QP) solver, the implementation of efficient algorithms that exploit the underlying problem structure drew the attention of many researchers and the progress in the field has been remarkable. The aim of this paper is to summarize the main algorithmic advances in the field and to provide a consistent benchmark between a selection of software tools that have been recently developed. The code that was used for the simulations is publicly available for readers that wish to reproduce the results or test the benchmarked solvers on their own nonlinear MPC applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.