Abstract
This paper describes two nonlinear Model Predictive Control (MPC) algorithms with neural approximation. The first algorithm mimics the MPC algorithm in which a linear approximation of the model is successively calculated on-line at each sampling instant and used for prediction. The second algorithm mimics the MPC strategy in which a linear approximation of the predicted output trajectory is successively calculated on-line. The presented MPC algorithms with neural approximation are very computationally efficient because the control signal is calculated directly from an explicit control law, without any optimisation. The coefficients of the control law are determined on-line by a neural network (an approximator) which is trained off-line. Thanks to using neural approximation, successive on-line linearisation and calculations typical of the classical MPC algorithms are not necessary. Development of the described MPC algorithms and their advantages (good control accuracy and computational efficiency) are demonstrated in the control system of a high-purity high-pressure ethylene-ethane distillation column. In particular, the algorithms are compared with the classical MPC algorithms with on-line linearisation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.