Abstract

Artificial blood vessels made from polyurethane (PU) have been researched for many years but are not yet in clinical use. The main reason was that the PU materials are prone to degradation after contact with blood and will also cause inflammation after long-term implantation. At present, PU has made progress in biostability and biocompatibility, respectively. The PU for artificial blood vessels still requires a balance between material stability and biocompatibility to maintain its long-term stability in vivo, which needs to be further optimized. Based on the requirement of PU materials for artificial vascular applications, this paper views the development of biostable PU, bioactive PU, and bioresorbable PU. The improvement of biostable PU from the monomer structure, chemical composition, and additives are discussed to improve the long-term biostability in vivo. The surface grafting and functionalization methods of bioactive PU to reduce thrombosis and promote endothelialization for improving biocompatibility are summarized. In addition, the bioresorbable PU for tissue-engineered artificial blood vessels is discussed to balance between the degradation rate and mechanical properties. The ideal PU materials for artificial blood vessels must have good mechanical properties, stability, and biocompatibility at the same time. Finally, the application potential of PU materials in artificial vascular is prospected.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.