Abstract

Optical microscopy has been widely applied in cellular and subcellular imaging. Conventional light microscopes, however, have rather limited imaging depth and are limited to imaging only mechanically sectioned thin samples. Multiphoton microscopy and optical coherence microscopy are common techniques for diffraction-limited imaging beyond an imaging depth of 0.5 mm. Focal modulation microscopy is a novel method that combines confocal spatial filtering with focal modulation to reject out-of-focus backgrounds. Focal modulation microscopy has demonstrated an imaging depth comparable to those of multiphoton microscopy and optical coherence microscopy, near-real-time image acquisition, and capability with a multiple contrast mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.