Abstract

Machining is one of the final steps in the manufacturing value chain, where the dimensional tolerances are fine-tuned, and the functional surfaces are generated. Many factors such as the process type, cutting parameters, tool geometry and wear can influence the surface integrity (SI) in machining. Being able to predict and monitor the influence of different parameters on surface integrity provides an opportunity to produce surfaces with predetermined properties. This paper presents an overview of the recent advances in computational and artificial intelligence methods for modelling and simulation of surface integrity in machining and the future research and development trends are highlighted.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.