Abstract

Aqueous zinc ion batteries (AZIBs) are considered as one of the most promising energy storage technologies due to their advantages of being low in cost, high in safety, and their environmental friendliness. However, dendrite growth and parasitic side reactions on the zinc metal anode during cycling lead to a low coulombic efficiency and an unsatisfactory lifespan, which seriously hinders the further development of AZIBs. In this regard, metal–organic frameworks (MOFs) are deemed as suitable surface modification materials for the Zn anode to deal with the abovementioned problems because of their characteristics of a large specific surface area, high porosity, and excellent tunability. Considering the rapidly growing research enthusiasm for this topic in recent years, herein, we summarize the recent advances in the design, fabrication, and application of MOFs and their derivatives in the surface modification of the zinc metal anode. The relationships between nano/microstructures, synthetic methods of MOF-based materials, and the enhanced electrochemical performance of the zinc metal anode via MOF surface modification are systematically summarized and discussed. Finally, the existing problems and future development of this area are proposed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.