Abstract
The conjugate addition of carbon nucleophiles to acceptor activated olefins is one of the most important reactions for carbon-carbon bond formation. With optically active metal complexes this transformation can be catalyzed enantioselectively. This review is a collection of the newer literature (since 2001) on this topic. The metal salts and complexes applied are in a broad range, starting from solely Lewis acidic M(II) and M(III) compounds, such as magnesium, zinc, boron, aluminum and the lanthanoids. Transition-metal catalysts suitable for asymmetric conjugate additions are compounds of ruthenium, iridium, nickel, and palladium. The most flourishing fields are, however, the catalysis with rhodium and copper complexes. Rhodium catalysts often have a chiral diphosphane like BINAP, or an optically active olefin as the ligand, the latter being a newer development. The privileged ligand structures for copper catalysts are monodentate phosphoramidites with axially chiral BINOL or other biphenol units.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.