Abstract
Protein function can be modulated or dictated by the amplitude and timescale of biomolecular motion, therefore it is imperative to study protein dynamics. Nuclear Magnetic Resonance (NMR) spectroscopy is a powerful technique capable of studying timescales of motion that range from those faster than molecular reorientation on the picosecond timescale to those that occur in real-time. Across this entire regime, NMR observables can report on the amplitude of atomic motion, and the kinetics of atomic motion can be ascertained with a wide variety of experimental techniques from real-time to milliseconds and several nanoseconds to picoseconds. Still a four orders of magnitude window between several nanoseconds and tens of microseconds has remained elusive. Here, we highlight new relaxation dispersion NMR techniques that serve to cover this “hidden-time” window up to hundreds of nanoseconds that achieve atomic resolution while studying the molecule under physiological conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.