Abstract
The development of NMR methods for the characterization of structure and dynamics in mesophase composite systems was originally proposed in this LDRD. Mesophase systems are organic/inorganic hybrid materials whose size and motional properties span the definition of liquids and solids, such as highly viscous gels or colloidal suspensions. They are often composite, ill defined, macromolecular structures that prove difficult to characterize. Mesophase materials are of broad scientific and programmatic interest and include composite load bearing foams, aerogels, optical coatings, silicate oligomers, porous heterogeneous catalysts, and nanostructured materials such as semiconductor quantum dot superlattices. Since mesophased materials and precursors generally lack long-range order they have proven to be difficult to characterize beyond local, shortrange order. NMR methods are optimal for such a task since NMR observables are sensitive to wide ranges of length (0-30{angstrom}) and time (10{sup -9}-10{sup 0}sec) scales. We have developed a suit of NMR methods to measure local, intermediate, and long range structure in a series of mesophase systems and have constructed correlations between NMR observables and molecular size, topology, and network structure. The goal of this research was the development of a strong LLNL capability in the characterization of mesophased materials by NMR spectroscopy that will leadmore » to a capability in rational synthesis of such materials and a fundamental understanding of their structure-property relationships. We demonstrate our progress towards attaining this goal by presenting NMR results on four mesophased model systems.« less
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have