Abstract

AbstractThe ultimate goal of the advancements in bioelectronics and robotics is the creation of seamless interfaces between artificial devices and biological structures. Current efforts in this area have been focused on designing biocompatible, mechanically compliant, and minimally invasive electronic and robotic systems for a range of applications, such as motor control and sweat sensing. The purposeful design of bioelectronic and robotic systems using the principles of biomimicry enables the creation of biocompatible and life‐like machines and electronics. The success of such approaches relies on the new development and applications of soft materials, as well as methods of actuation and sensing that are inspired, either by composition, function, or properties, of the naturally occurring organisms. A combination of rigid structural components, soft actuators, and flexible sensors can enable the integration of such devices with biological organisms and eventually human users. In this review, we highlight the recent advances in biomimetic soft robotics and bioelectronics. We describe the soft robotic fabrication toolbox and modern solution in bioelectronics that, in our opinion, will enable the fusion of these fields by creating robotic bioelectronic systems. Future development in this area will require substantial integration of adaptable and responsive components at the biointerfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.