Abstract

Silicon (Si) photonics has emerged as a prominent technology for meeting the escalating requirements of high-speed data transmission in optical communication systems. These systems need to be compact, energy-efficient, and capable of handling large amounts of data, driven by the advent of next-generation communication devices. Recently, there have been significant activities in exploring graphene within silicon-based components to enhance the overall performance metrics of optoelectronic subsystems. Graphene’s high mobility of charge carriers makes it appealing for the next generation of high-performance devices, especially in high-speed optoelectronics. However, due to its zero bandgap, graphene is unlikely to replace silicon entirely, but it exhibits potential as a catalyst for silicon-based devices, namely in high-speed electronics and optical modulators, where its distinctive characteristics can facilitate progress in silicon photonics and other fields. This paper aims to provide an objective review of the advances made within the realm of graphene-integrated Si photonics for high-speed light modulation and detection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.