Abstract
Cellulose nanomaterials are low cost, biocompatible and readily combined with other materials to produce nanocomposites with a range of applications. Cellulose nanomaterials have many advantageous properties, including high mechanical and thermal stability, high specific surface area, and biodegradability. The highly flexible cellulose structure can be exploited to transform bulk cellulose into isolated nanostructured fibers that retain the original thermal, mechanical, and optical properties of the bulk material. In this review, we highlight recent advances in the environmental application of cellulose nanocomposites. We introduce the different chemical, mechanical, and biological pathways used for preparation of cellulose nanomaterials. Recent rapid technological advancements in the preparation of cellulose nanocomposites by combining metal nanoparticles, organic polymers, and metal-organic frameworks (MOFs) with cellulose are then discussed. Finally, we summarize the latest progress in the application of cellulose nanocomposites in environmental science and engineering and provide a perspective on the future outlook of cellulose nanocomposites.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have