Abstract
Rapid, high-sensitivity, and real-time characterization of microorganisms plays a significant role in several areas, including clinical diagnosis, human healthcare, early detection of outbreaks, and the protection of living beings. Integrating microbiology and electrical engineering promises the development of low-cost, miniaturized, autonomous, and high-sensitivity sensors to quantify and characterize bacterial strains at various concentrations. Electrochemical-based biosensors are receiving particular attention in microbiological applications among the different biosensing devices. Several approaches have been adopted to design and fabricate cutting-edge, miniaturized, and portable electrochemical biosensors to track and monitor bacterial cultures in real time. These techniques differ in their sensing interface circuits and microelectrode fabrication. The goals of this review are (i) to summarize the current state of CMOS sensing circuit designs in label-free electrochemical biosensors for bacteria monitoring and (ii) to discuss the material and size of the electrodes used in electrochemical biosensors in microbiological applications. In this paper, we reviewed the latest and most advanced CMOS integrated interface circuits that have recently been used in electrochemical biosensors to identify and characterize bacteria species, such as impedance spectroscopy, capacitive, amperometry, and voltammetry, etc. In addition to the interface circuit design, other crucial factors, such as the material and scale of the electrodes, must be considered to increase the sensitivity of electrochemical biosensors. Surveying the literature in this field improves our knowledge about the impact of electrode designs and materials on sensing precision and will help future designers adapt, design, and fabricate appropriate electrode configurations based on their application. Thus, we summarized the conventional microelectrode designs and materials mainly employed in microbial sensors, including interdigitated electrodes (IDEs), microelectrode arrays (MEAs), paper, and carbon-based electrodes, etc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Biomedical Circuits and Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.