Abstract

Industrial activities have surged in recent years, resulting in severe environmental and human health consequences. Coal mining, in particular, has emerged as a major contributor to environmental degradation, notably through water pollution. Acid Mine Drainage (AMD) refers to the contaminated water generated by mining operations, characterized by low pH levels and high concentrations of heavy metals. Given the substantial impact of AMD on the environment, the development of effective treatment methods is imperative. This review aims to provide a comprehensive and in-depth understanding of AMD treatment, with a specific emphasis on hybrid technologies. To the best of our knowledge, this review represents the first systematic attempt to explore the application of hybrid technologies for AMD treatment. The mapping and PRISMA 2020 methodology were employed to ensure a thorough and comprehensive analysis of the available literature. This paper extensively examines the physicochemical characteristics of AMD, elucidating both individual treatment methods and the emerging field of hybrid treatment approaches. Furthermore, meticulous performance evaluations of each method are conducted, shedding light on the existing challenges and future research prospects in this domain. By addressing the current gaps in our understanding of hybrid technologies for AMD treatment, this paper makes a significant contribution to the existing body of knowledge. The findings presented here offer valuable insights into the development of efficient and sustainable treatment strategies for AMD. Ultimately, this review serves as a valuable resource for researchers, practitioners, and policymakers seeking to mitigate the adverse effects of AMD and promote environmental stewardship in mining operations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.