Abstract
AbstractPolymer hydrogel has been used as a drug delivery carrier for many decades. Recently, the emergence of three‐dimensional (3D) printing technology has opened up a new area for applications of drug delivery based on polymer hydrogel. A series of drug delivery platforms based on 3D printing hydrogel are developed to achieve local delivery of small/large molecule drugs as well as therapeutic cells. Compared with other manufacturing technologies, 3D printing technology can achieve high‐precision personalized manufacturing and complex spatial structure construction, which has a wide application prospect in the biomedical field. In this review, we summarized the recent advances in 3D printed polymer hydrogels as delivery platforms in drug and cell topical delivery. 3D printed drug delivery platform realizes drug delivery and controlled release locally. Meanwhile, precise control and manufacturing also provide conditions for customized drug delivery platforms. Besides this, a complex spatial structure constructed based on 3D printing technology is also conducive to cell proliferation and differentiation, providing a new carrier for tissue engineering and repair. Biomedical applications based on 3D printing technology promote the development of precision medicine and personalized medicine and provide a new direction for further research and application of 3D printing technology.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have