Abstract
This study addresses challenges in enhancing the thermal efficiency of parabolic solar collector energy systems using hybrid nanofluids, focusing on issues like nanoparticle clumping and decreased effectiveness. The objective is to optimize design parameters for improved energy absorption and efficiency by evaluating the thermal performance of hybrid nanofluids through theoretical and experimental analyses, aiming to enhance the overall efficiency of solar collector systems. The thermal performance of solar collector systems was evaluated by conducting numerical simulations and experimental analyses to investigate the effects of various nanoparticle compositions and concentrations. The findings suggest that hybrid nanofluids, specifically Au-Cu/EO and Cu-Al2O3, demonstrate enhanced heat transfer properties in comparison to conventional fluids, resulting in efficiency enhancements ranging from 22.44% to 35.01%. Compared to water, Al2O3/water (0.04%), and MWCNT/water (0.04%), the solar collector's thermal efficiency improves by 197.1%, 69.2%, and 6.1%, respectively. Furthermore, the research emphasizes the potential advantages of integrating precise nanoparticle concentrations to improve thermal efficiency while reducing the adverse effects of friction factors. The results emphasize the significance of tackling primary obstacles such as the clumping together of nanoparticles, heightened energy demands for pumping, and elevated expenses in the manufacture of hybrid nanofluids. The study enhances the advancement of cost-effective and efficient solar collector systems by identifying limits and suggesting alternative solutions. The research highlights the necessity for additional investigation into innovative combinations of nanomaterials, fine-tuning of fluid characteristics, and thorough evaluations of long-term stability in order to forward the practical use of hybrid nanofluids in solar energy systems.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have