Abstract

ABSTRACT Symmetric and asymmetric dihydroxylation reactions catalyzed by osmium have emerged as the most efficient route in the one-step synthesis of diols. This is because on an industrial scale 1,2-diols are prepared via a two-step procedure. Still, it is a challenge to prepare and apply osmium catalysts in dihydroxylation catalysis because of their safety and environmental implications; e.g., volatile, highly toxic, product contamination, etc. To date, few efforts were reported to comprehensively overcome these drawbacks with great success by heterogenizing to an insoluble matrix, including diminishment in catalytic performance. Hence, the need for efficacious solid-supported osmium catalysts to subdue these difficulties is a topic of great importance. This mini review provides a concise overview of some of the most encouraging solid-supported osmium catalysts reported over the last few years, which proved to be more efficient under mild conditions as opposed to other immobilized osmium catalytic systems. The summary discusses the latest developments in the synthetic heterogenizing and homogenization strategies, structure analysis and investigation toward symmetric and asymmetric dihydroxylation for diol production. Specific emphasis is focused on their mechanistic considerations, their reusability and improvement in their safety, and environmental implications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call