Abstract

The exploration and development of second-order nonlinear optical (NLO) materials in the middle- and far infrared (MFIR) region are important and high profile topics in the fields of NLO, solid-state chemistry and laser. Common MFIR NLO materials are chalcogenides, halides, and iodates, which have a wide MFIR transparent range and large NLO coefficients. This review summarizes recent achievements on MFIR NLO materials, and specifically focuses on their crystal structures and NLO properties. Compared to known materials, the common choice for cations are alkali-metal Li, Na, K, Rb and Cs, the coin-metal Ag, and the alkali-earth metal Ba. Exploring mixed-anions materials could be one of the most promising solutions to obtaining NLO materials with both large second-harmonic generation (SHG) intensities and high laser induced damage thresholds (LIDTs). This review also summarizes functional moiety theory to elucidate the design of promising NLO materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call